Chi-Square Goodness of Fit Test

Course:Statistics 1Lecturer:Dr. Courtney Pindling

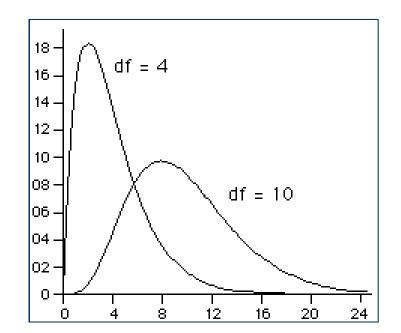
Parametric and Nonparametric Tests

Parametric:

Normal and homogeneous distributions Assumptions about parameters Interval or ratio scales

Nonparametric:

Distribution independent


Frequencies, ranks, or nonparametric measures Nominal or ordinal scales

Chi-Square Distribution, χ^2

Ch-Square Distribution: Degree of freedom,

df = C - 1, C is
number
of categories

- 1. Shape of Chi-Square depends on *df*
- 2. As number of categories increase, the mode of the distribution has a larger chi-square value
- 3. Family of chi-square distributions (*df*)

Goodness of Fit

- Uses sample data to test hypothesis about the shape or proportion of a population distribution
- Test how well the sample distribution fits the population distribution specified by H_0
- Null Hypothesis, *H*₀:
 - No Preference: The proportion is equally divided among the categories or
 - No Difference from Know Population: The proportion of one population is no different from the proportion of another

Frequencies

• Observed Frequency, *f_o*:

The number of individuals from the sample who are classified in a particular category. Each individual is counted as one-and-only one category

• Expected Frequency, *f_e*:

For each category, is the frequency value that is predicted from the H_0 and the sample size (n).

 $f_e = pn$, where *p* is the proportion stated by H_0

Example of *f*_e

<i>n</i> = 60	Category A	Category B	Category C	Category D
H ₀ :	25%	20%	30%	25%
p	0.25	0.20	0.30	0.25
$f_{e} = pn$	15	12	18	15

Chi-Square Statistics

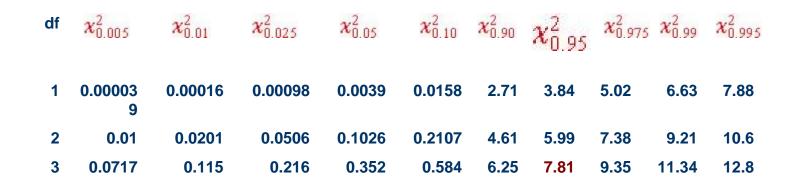
Steps to calculate χ^2 1. Find $f_o - f_e$ for each category 2. Square the difference 3. Divide Step 1 by f_e 4. Add values from all categories, this is the χ^2 *statistics*

chi-square =
$$\chi^2 = \Sigma \frac{(f_0 - f_e)^2}{f_e}$$

Sample of Goodness of Fit

• A researcher uses a chi-square test for goodness of fit with 389 people to determine if there are any preferences among four different fruit juices.

<i>n</i> = 389	Drink A	Drink B	Drink C	Drink D
<i>df</i> = 4 - 1 = 3				
H ₀ :	25%	25%	25%	25%
p	0.25	0.25	0.25	0.25
Responses	89	107	104	89


 H_o : No Preference or equally likely proportion, $p = \frac{1}{4} = 0.25$

Goodness of Fit Table

Criterion	f _o	p	f _e = pn	f _o - f _e	(f _o - f _e)²	$(f_o - f_e)^2 I $ f_e	
Drink A	89	0.25	97.25	-8.25	68.0625	0.70	
DIIIKA	00	0.20	57.20	-0.20	00.0020	0.70	
Drink B	107	0.25	97.25	9.75	95.0625	0.98	
Drink C	104	0.25	97.25	6.75	45.5625	0.47	
Dillik O	104	0.20	07.20	0.70	40.0020	0.47	
Drink D	89	0.25	97.25	-8.25	68.0625	0.70	
Totals	389	1	389	0	X ² =	2.85	
Objectives statistics 2.95 , restriction, he mays than $200/$ of calls should have $f = 5$							

Chi-square statistics = 2.85; restriction: no more than 20% of cells should have $f_e < 5$

Chi-Square: Critical Value

• The critical region of the chi-square test is the region above 1- a; so for a = 0.05 and df = 4 - 1 = 3, $\chi^2 = 7.81 (\chi^2_{0.95})$

Decision and Conclusion

- Chi-Square statistics of 2.85 < Chi-Square Critical or 2.85 < 7.81
- Do not reject H_0 and so
- Conclude that the four *drinks are equally likely to be preferred*.