Chi-Square Test for Independence

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Review: Goodness of Fit

- Uses sample data to test hypothesis about the shape or proportion of a population distribution
- Test how well the sample distribution fits the population distribution specified by H_0
- Null Hypothesis, *H*₀:
 - No Preference: The proportion is equally divided among the categories or
 - No Difference from Know Population: The proportion of one population is no different from the proportion of another

Test for Independence

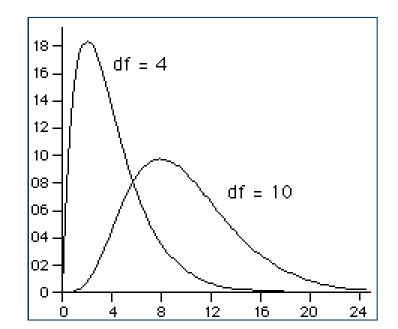
- Two variables are independent when:
 - there is no consistent, predictable relationship between them
 - The frequency distribution for one sample is not related to (independent to) the categories of the second sample
- <u>When two variable are independent</u>: for each individual, the value obtained from one variable is not related to (or influenced by) the value of the second variable
- Null Hypothesis, *H*₀:
 - Version 1: There is no relationship between variables or
 - Version 2: The distributions have equal proportions (same shape)

Chi-Square Distribution, χ^2

Ch-Square Distribution:

Independent Samples,

- df = (R 1)(C 1),C is number of columns (variables)
- R is number of rows (categories)
- 1. Shape of Chi-Square depends on *df*
- 2. Family of chi-square distributions (*df*)



Frequencies

Observed Frequency, f_o:

The number of individuals from the sample who are classified in a particular category. Each individual is counted as one-and-only one category

Expected Frequency, f_e:

For each category, is the frequency value that is predicted from the marginal row and column totals and the sample size (n).

 $f_e = (C \times R)/n$, where C is column total and R is row total (by cell)

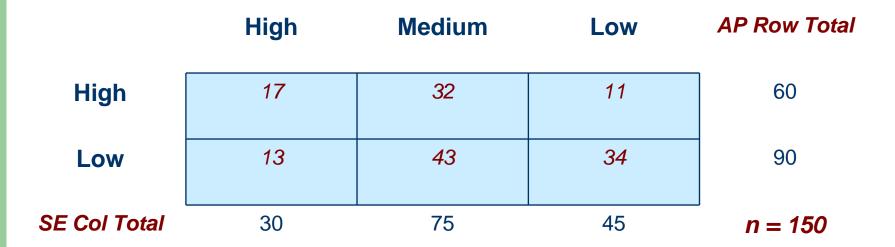
Contingency Table

Variable 1 Variable 2 Variable 3 *Row Total*

Category A	$f_{A1} = (A)(1)/n$	$f_{A2} = (A)(2)/n$	$f_{A3} = (A)(3)/n$	Category A Row Total (A)
Category B	f _{B1} = (B)(1).n	$f_{B1} = (B)(1)/n$	$f_{B1} = (B)(1)/n$	Category B Row Total (B)
Column Total	Variable 1 Column Total (1)	Variable 2 Column Total (2)	Variable 3 Column Total (3)	Grand Total = N

Sample Test for Independence

 A researcher is investigating the relationship between academic performance (AP: High, Low) and self-esteem (SE: Low, Medium, High). A sample of n = 150 ten-year-old children is obtained and each child is classified by levels of academic performance and self-esteem. The **observed frequency** distribution along with column and row totals are shown below (3 x 2 contingency table).



AP = Academic Performance and **SE** = Self-Esteem

Chi-Square Statistics

Steps to calculate χ^2

1. Find f_e for each variable and category 2. Compute $f_0 - f_e$ and Square the difference 3. Divide Step 1 by f_e 4. Add values from all rows or columns, this is the χ^2 *statistics*

chi-square =
$$\chi^2 = \Sigma \frac{(f_0 - f_e)^2}{f_e}$$

Expected Frequency Distribution Table

	High	Medium	Low	AP Row Total
High	(30 x 60) / 150 = 12	30	18	60
Low	18	45	(45 x 90) / 150 = 27	90
SE Col Total	30	75	45	n = 150

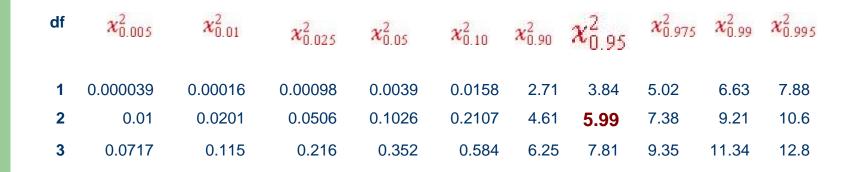
No more than 20% of cell should have f_e less than 5

Chi-Square Statistics

	High	Medium	Low	Row Total
	Се	ell value = (f _o - f _e	$()^{2} / f_{e}$	
High	$(17 - 12)^2 / 12 = 2.08$	0.13	2.72	4.93
Low	1.39	0.09	(34 - 27) ² / 27 = 1.81	3.29
Column Total	3.47	0.22	4.53	χ ² = 8.22

df = (R - 1)(C - 1) = (2 - 1)(3 - 1) = 2

Chi-Square: Critical Value



• The critical region of the chi-square test is the region above 1- a; so for a = 0.05 and df = (1)(2) = 2, $\chi^2 = 5.99 (\chi^2_{0.95})$

Decision and Conclusion

- Chi-Square statistics of 8.22 > Chi-Square Critical or 8.22 > 5.99 at a = 0.05 level
- Reject H_o and so
- Conclude that there is a significant relationship between academic performance and self-esteem or there is a significant difference between the distribution of self-esteem for high academic performance versus low academic performance.

Effect Size for 2 x 2 Table

- Cramer Phi coefficient, F_C
- Interpret like Pearson r

 $\phi =$ $\sqrt{\frac{\chi^{-}}{n}}$

Effect Size for Larger Table

- Cramer's V
- df^* is smaller of (R 1) or (C 1)
- For example: $df^* = 1$ and Cramer's V = 0.23
- Small effect size

$$V = \sqrt{\frac{\chi^2}{n(df *)}} = \sqrt{\frac{8.22}{150(1)}} = 0.23$$

Interpreting Cramer's V

For <i>df</i> * = 1	0.10 < <i>V</i> < 0.30	Small effect
e.g. $V = 0.23$ is small	0.30 < V < 0.50	Medium effect
	V > 0.50	Large effect
For $df^* = 2$	0.07 < <i>V</i> < 0.21	Small effect
	0.21 < V < 0.35	Medium effect
	V > 0.35	Large effect
For $df^* = 3$	0.06 < <i>V</i> < 0.17	Small effect
	0.17 < V < 0.29	Medium effect
	V > 0.29	Large effect

Assumptions for Chi-Square

- Data must be in frequency form
- Each observation must be independent of each other
- Sample size must be adequate
 - For 2 x 2 table, Chi-Square, $n \ge 20$
 - No more than 20% of cell should have $f_e < 5$
- Distribution assumptions must be decided before data collection
- Sum of f_o must equal sum of f_e