Table 1. Covariance,
$$s_{xy} = \frac{\sum (X_i - M_x)(Y_i - M_y)}{n - 1}$$

Where, M_x and M_y are means of X and Y variables respectively

X_i	Y_i	$X_i - M_x$	$Y_i - M_y$	$(X_i - M_x)(Y_i - M_y)$
2	49	-1	-1	1
5	56	2	6	12
1	40	-2	-10	20
3	53	0	3	0
4	53	1	3	3
1	37	-2	-13	26
5	62	2	12	24
3	47	0	-3	0
4	58	1	8	8
2	45	-1	-5	5
2	49	-1	-1	1
$M_x = 3$	$M_y = 50$	Sum = 0	Sum = 0	Sum = 99

$$s_{xy} = \frac{\sum (X_i - M_x)(Y_i - M_y)}{n - 1} = \frac{99}{9} = 11$$

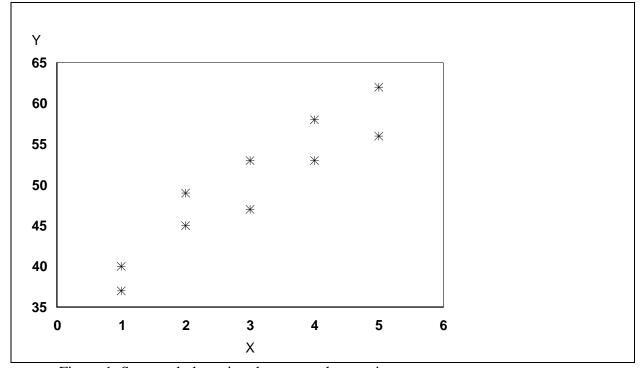


Figure 1. Scattered plot using document chart option.

Correlation Coefficient, r

Pearson Product Moment Correlation Coefficient or sample correlation coefficient, r

$$r_{xy} = r = \frac{s_{xy}}{s_x s_y},$$

where

 r_{xy} = sample correlation coefficient,

 s_{xy} = sample covariance,

 s_x = sample standard deviation of x, and

 s_y = sample standard deviation of y

A computational formula for r is:

Table 2. Sample Correlation Coefficient,
$$r = \frac{N\sum XY - (\sum X)(\sum Y)}{\sqrt{N\sum X^2 - (\sum X)^2} \cdot \sqrt{N\sum Y^2 - (\sum Y)^2}}$$

X_{i}	$\mathbf{Y_i}$	X^2	Y^2	XY
2	49	4	2401	98
5	56	25	3136	280
1	40	1	1600	40
3	53	9	2809	159
4	53	16	2809	212
1	37	1	1369	37
5	62	25	3844	310
3	47	9	2209	141
4	58	16	3364	232
2	45	4	2025	90
$\Sigma X = 30$	$\sum Y = 500$	$\sum X^2 = 110$	$\sum Y^2 = 25566$	$\Sigma XY = 1599$

$$r = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{\sqrt{N\Sigma X^2 - (\Sigma X)^2} \cdot \sqrt{N\Sigma Y^2 - (\Sigma Y)^2}} = \frac{10(1599) - (30)(500)}{\sqrt{10(110) - 30^2} \cdot \sqrt{10(25566) - 500^2}}$$

$$r = \frac{990}{1063.96} = 0.93$$

So the Pearson r or sample correlation coefficient is 0.93 and since 0.93 > 0.80 there is a strong positive correlation or linear association between both variables.

The Coefficient of Determination, r^2 is $0.93^2 = 0.8649$ or 86.49% of the variation in Y is associated with change in X; i.e. 13.51% is caused by other factors. **SPSS outputs**

Table 3. **Descriptive Statistics Table**

SPSS Procedure: Analyze -> **Descriptive Statistics** - Select X and Y variables and for **Statistics** Select Mean, Sum and Std Dev.

		Х	Υ
N	Valid	10	10
Mean		3.0000	50.0000
Std. Deviation	on	1.49071	7.93025
Sum		30.00	500.00

Table 4. Correlation Table

See SPSS Correlation figure on next page.

The sample correlation coefficient is **0.93** and sample covariance is **11**.

		Υ
Χ	Pearson Correlation	.930(**)
•	Sig. (2-tailed)	.000
	Sum of Squares and Cross-products	99.000
	Covariance	11.000
	N	10

^{**} Correlation is significant at the 0.01 level (2-tailed).

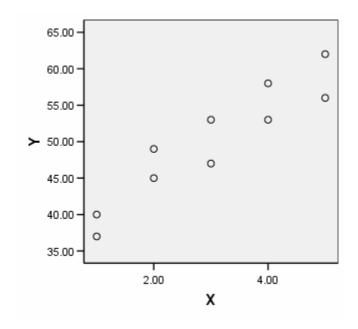


Figure 2. SPSS: Scatter plot

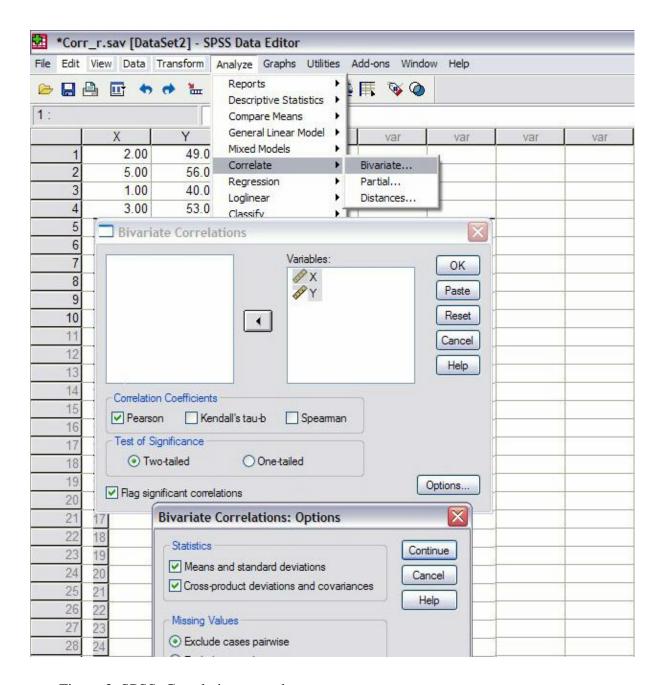


Figure 3. SPSS: Correlation procedure

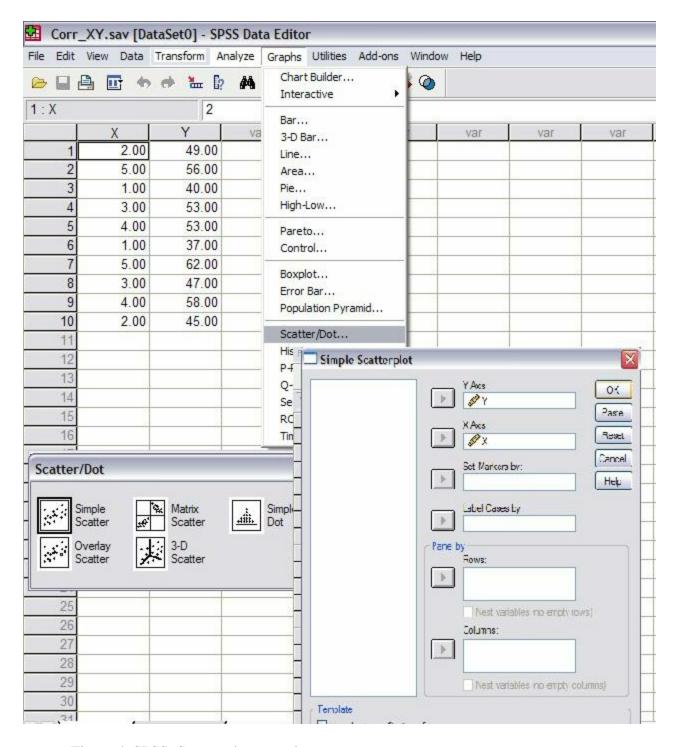


Figure 4. SPSS: Scatter plot procedures.

To draw a scatter plot using SPSS do the following: **Graph** -> **Scatter/Dot** -> **Simple Scatter** -> Select variables. A figure of the SPSS procedure is shown below.