One-Sample Correlation Case II

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Introduction

Is the correlation coefficient significantly different from *0* or some reference value, *a*?

Test whether the linear relationship between x and y is significant by testing hypothesis about the population correlation coefficient, ρ_{xv} :

Case 1: $H_0: \rho_{xy} = 0$ or Case 2: $H_0: \rho_{xy} = a$

Note: Will only examine Case 2 in this lecture

Critical Value: $(H_0: \rho = a)$

Critical Value from standard normal distribution, z score
Fisher Z transformation

(change scale from r to Z)

Given: a (0.05 or 0.01)

Two-tailed: z = +/- 1.96 (a = 0.05)
One-tailed: z = 1.64 (a = 0.05)

Hypothesis

- Null Hypothesis:
 - $H_0: \rho = a$
- Alternative Hypothesis:
 - $-H_a: \rho \neq a \text{ or }$
 - H_a : $\rho \neq 0.70$ or
 - $H_a: \rho > 0.70$ or

Example: A sample with n = 10 (x and y pairs) produced a correlation coefficient of $r_{xy} = 0.91$. Is the population correlation, p > 0.70?

Rejection Criteria

- We use hypothesized $\rho = 0.70$
 - Underlying standard normal (*Fisher Z*)
 - Critical Value, CV:
 - for one-tailed:

Z_{0.95} = **1.64**

– Reject null hypothesis if z-stat >= 1.64

Fisher Z Transformation

- Convert r to Fisher Z - $Z_r = 0.867 \ (r = 0.91)$
 - $Z_{p} = 1.528 \ (r = 0.70)$

Convert r to Fisher Z

Calculated

Enter r	0.70	Fisher Z is	0.86730053
Enter r	0.91	Fisher Z is	1.52752443

Standard Error

$$S_{zr} = \frac{1}{\sqrt{n-3}} = \frac{1}{\sqrt{10-3}} = 0.378$$

Test Statistics

$$z = \frac{Z_r - Z_\rho}{S_{zr}} = \frac{1.528 - 0.867}{0.378} = 1.75$$

Decision: Approach 1

- Critical Value
 - Given: a = 0.05, (Upper tail) $z_{cv} = 1.64$
- Decision: (reject H_0):
 - Since $z_{stat} > z_{cv}$ or 1.75 > 1.64
- Conclusion:
 - The $\rho > 0.70$

Approach 2: Confidence Interval

 CI_{95} : $Z_r \pm 1.96(\sigma_{zr}) = 1.75 \pm 1.96(0.378)$

CI₉₅ for Z: 1.009 to 2.491 CI₉₅ for r: 0.765 to 0.986

 Convert from z' to r
 Calculated

 Enter z'
 1.009
 Correlation, r is
 0.76534809

 Enter z'
 2.491
 Correlation, r is
 0.98637283

Decision: Approach 2

- 95% Confidence Interval:
 - Cl₉₅ : 0.765 to 0.986
- Decision: (reject H_0):
 - Since $\rho = 0.70$ is outside CI₉₅
- Conclusion:
 - The ρ is different from 0.70