One-Sample Correlation Case

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Introduction

Is the correlation coefficient significantly different from *0* or some reference value, *a*?

Test whether the linear relationship between x and y is significant by testing hypothesis about the population correlation coefficient, ρ_{xv} :

Case 1: $H_0: \rho_{xy} = 0$ or Case 2: $H_0: \rho_{xy} = a$

Note: Will only examine Case 1 in this lecture

Approach 1

Critical Value from t-distribution

- Given: a (0.05 or 0.01) and df(n-2)
- Sample: r_{xy} and n

Case 1 (H_0 : $\rho = 0$): Hypothesis

- Null Hypothesis:
 - $H_0: \rho = 0$
- Alternative Hypothesis:
 - $H_0: \rho \neq \mathbf{0}$

Example: A sample with n = 10 (x and y pairs) produced a correlation coefficient of $r_{xy} = 0.4501$. Is this correlation different from zero?

Case 1 (H_0 : $\rho = 0$): Rejection Criteria

- We use hypothesized $\rho = 0$
 - Underlying t-distribution
 - Large *n* approaches standard normal distribution
 - df = n 2 or 8
 - Critical Value, CV:

for two-tailed t with df = 8 and a = 0.05 is

 $t_{cv} = 2.306$

Case 1 (H_0 : $\rho = 0$): Test Statistics

$$t = r_{xy} \sqrt{\frac{n-2}{1-r_{xy}^2}}$$
, where r_{xy} is sample r

$$t_{stat} = r_{xy} \sqrt{\frac{n-2}{1-r_{xy}^2}} = 0.4501 \sqrt{\frac{10-2}{1-0.4501^2}} = 1.4256$$

Case 1 (H_0 : $\rho = 0$): Decision

- Results:
 - Given: a = 0.05, df = 8, $t_{cv} = 2.306$
 - $t_{stat} = 1.4256$
- Decision: (do <u>**not**</u> reject *H*₀):
 - Since $t_{stat} < t_{cv}$ or 1.4256 < 2.306
- Conclusion:
 - The r = 0.4501 is <u>not</u> statistically different from 0, so there is no linear relationship between x and y

Approach 2

Correlation Critical Value Table

- Given: a (0.05 or 0.01) and *df* (n − 2)
- Sample: r_{xy} and n

Case 1 (H_0 : $\rho = 0$): CV Table

Level of Significance (a) for a Two-Tailed Test

df (n-2)	0.1	0.05	0.02	0.01
1	0.988	0.997	0.9995	0.9999
2	0.9	0.95	0.98	0.99
3	0.805	0.878	0.934	0.959
4	0.729	0.811	0.882	0.917
5	0.669	0.754	0.833	0.874
6	0.622	0.707	0.789	0.834
7	0.582	0.666	0.75	0.798
8	0.549	0.632	0.716	0.765

Case 1 (*H*₀: *ρ* = **0**): CV Criteria

- The value found in the <u>CV Table</u> (a and df) is minimum **r** needed to be 95% (a = 0.05) confident that a relationship exists
- If the absolute value of **r** is above **0.632**, reject H_0 (there is <u>no</u> relationship) and accept the H_a . There is a statistically significant relationship between x and y (p < 0.05)
- If the absolute value of *r* is below 0.632, do <u>not</u> reject H₀. There is <u>not</u> a statistically significant relationship between x and y (p < 0.05)
- A p =< 0.05 means that r exceeds the critical value found in the <u>CV</u> <u>Table</u> and you are 95% confident that a relationship exists. A p > 0.05 means that r was less than the critical value in the CV Table and you cannot be 95% confident that a relationship exists

Case 1 (H_0 : $\rho = 0$): CV Decision

- Results:
 - Given: a = 0.05, df = 8, $r_{cv} = 0.632$
- Decision: (do <u>**not**</u> reject *H*₀):
 - Since $r_{sample} < r_{cv}$ or 0.4501 < 0.632
- Conclusion:
 - The *r* = 0.4501 is <u>not</u> statistically different from 0, so there is no linear relationship between *x* and *y*
 - Same conclusion as when used the t-critical value