Hypothesis Testing

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Introduction

Hypothesis testing can be used to determine whether a statement about the value of a population should or should not be rejectedIt begins by making a tentative assumption about a population parameter

- Tentative assumption called *null hypothesis*, *H*₀
- Opposite of H_o is called alternative hypothesis, H_a
- Uses data from sample to test two competing statements

Null Hypothesis

- Event, or, apparent effect, or difference is due to chance purely random or by chance
- Typically the opposite of the researcher's hypothesis
- The opposite of the alternative hypothesis
- Rejecting the H_0 favors the H_a
- Null hypothesis:
 - *H*₀
 - Event(1) = Event(2) or Event(1) Event(2) = 0

Alternative Hypothesis

- Event, or, apparent effect, or difference is <u>not</u> due to chance – significant
- The researcher's hypothesis
- The opposite of the null hypothesis
- Rejecting the H_0 favors the H_a
- Alternative hypothesis:
 - *H*a
 - Event(1) ≠ Event(2) or Event(1) >= Event(2)

Significance

- Probability of an outcome given the null hypothesis,
 p-value
- Low probability value indicates rejection of the null hypothesis
- Typically: reject *H*₀ if *p-value* =< 0.05 or 0.01
- Alpha or a or a: probability below which H_0 is rejected
- The significance level is the same as alpha, a
- Rejection of H_0 at **a** means a statistical significance
- Statistically significant means the effect is not due to chance

Type I and II Errors

- Either H_0 or H_a is true, but not both
- Hypothesis could lead to accepting H_0 when it is false
- Type I Error: Rejecting the H_0 when it is true (a)
- Type II Error: Accepting the H_0 when it is false (B)

		Population Condition	
		H _o True	H _a True
Condition	Accept H _o	Correct	Туре II
	Reject H _o	Туре І	Correct

Definitions I

- Test Statistics: computed statistics
 - (sample mean reference) / standard error
 - Standard error = standard deviation / sqrt(N)
- *p-value*: a probability that measures the support (of lack of) provided by the sample for the null hypothesis
- Critical value: a number based on a
 - 1.960 for **a** = 0.05
 - 2.576 for **a** = 0.01

Definitions II

• Confidence Interval: computed statistics

- mean +/- (Critical value)(Standard error) or
- (mean difference) +/- (Critical value)(Standard error)

One-Tailed Test

- Hypothesis is **Directional**
- Lower Tail Test
 - H_0 : mean₁ = mean₂
 - H_a : mean₁ < mean₂
- Upper Tail Test
 - H_0 : mean₁ = mean₂
 - H_a : mean₁ > mean₂
- **Reject H**₀ if
 - p-value =< a or</p>
 - z =< -2.33 (a = 0.01) or
 - z =< -1.64 (a = 0.05)

Two-Tailed Test

- Hypothesis is nondirectional
- Two-Tailed Test
 - H_0 : mean₁ = mean₂
 - H_a : mean₁ \neq mean₂
- **Reject H**_o if
 - 2(p-value) =< a or</p>
 - z =< -1.96 or z >= 1.96
 (a = 0.05)

Steps of Hypothesis Testing

- Step 1. Develop the H_o and H_a
- Step 2. Specify level of significance, a
- Step 3. Compute test statistics from sample data
- Step 4. Obtain or compute *p*-value from Step 3
- Step 4. Reject H_0 if *p*-value =< a

Reject Null Hypothesis

- Test Statistics >= Test Table Value*
- p-value =< a
- Confidence Interval does not contain "zero" (for mean difference) or
- Reference mean is outside the sample Confidence Interval (given *a*)