Linear Regression

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Introduction

Regression:

The statistical technique for finding the best-fitting straight line for two sets of data

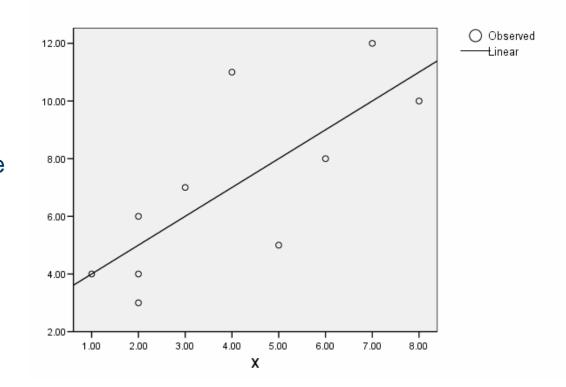
Regression Line:

The best-fitted straight line from a regression technique

Regression Plot

Regression Line:

- 1. Make relationship between X and Y easier to see
- 2. The line identifies the center or *central tendency* of the relationship
- 3. The line can be use for **prediction**



Υ

Regression Model

- Linear Relationship between X and Y
- X is the independent variable
- Y is the dependent variable
- $Y = B_1 X + B_0$
- **B**₁ is the slope of the line
- B₀ is the y-intercept or value of Y when X = 0
- The residual is the vertical distance between each data point and the regression line

X	Υ		
Independent	Dependent		
4	11		
3	7		
1	4		
7	12		
2	6		

Regression Table

x	Y	X - M _x	Y - M _Y	(X-MX) ² (5)	(Y-MY)² (6)	(5)(6)
4	11	0.6	3	0.36	9	1.8
3	7	-0.4	-1	0.16	1	0.4
1	4	-2.4	-4	5.76	16	9.6
7	12	3.6	4	12.96	16	14.4
2	6	-1.4	-2	1.96	4	2.8
M _x	M _Y			SS _x	SS _Y	SP
3.4	8			21.2	46	29

Regression Equation

• From Regression Table:

 $SP=29,\,SS_{\chi}=21.2$, $M_{\chi}=3.4$, $M_{\gamma}=8$

- $Y = B_1 X + B_0$
- B_1 is the slope of the line $B_1 = SP/SS_x = 29/21.2 = 1.368$
- **B**₀ is the y-intercept

 $B_0 = M_Y - B_1 M_X = 8 - 1.368(3.4) = 3.35$

• Y = 1.368X + 3.35

Residual Sum of Square: SS_{*Res*}

x	Y	X - M _x	Y - M _Y	(X-M _X)² (5)	(Y-M _Y)² (6)	(5)(6)	Predicted Y 1.368X+3.35	Residual Res	Res ²
4	11	0.6	3	0.36	9	1.8	8.82	2.18	4.75
3	7	-0.4	-1	0.16	1	0.4	7.45	-0.45	0.21
1	4	-2.4	-4	5.76	16	9.6	4.72	-0.72	0.51
7	12	3.6	4	12.96	16	14.4	12.92	-0.92	0.85
2	6	-1.4	-2	1.96	4	2.8	6.08	-0.08	0.007
M _x	M _Y			SS _x	SS _Y	SP			SS _{Res}
3.4	8			21.2	46	29			6.33
	Predicted Y: for $x = 5$, $Y = 1.368(5) + 3.35 = 10.19$								

Standard Error of Estimate

- Standard error of the estimate: gives a measure of the standard distance between a regression line and the actual data values
- $SS_{Residual} =$ **Sum** (Y Predicted Y)² = **6.33**
- Variance = SS/df
- df = n 2 = 5 2 = 3

std error of est =
$$\sqrt{\frac{SS_{Res}}{df}} = \sqrt{\frac{6.33}{3}} = 1.45$$

Standard Error and Correlation

- Std error of the estimate is **directly related** to the magnitude of the correlation between X and Y
- When the *correlation is near 1.00* (or -1.00) the data values will be *clustered close to regression line*
- As the correlation *nears zero*, the line will provide *less accurate predictions*
- **r**² measures the portion of the variability in the Y scores that is *predicted by the regression equation*
- (1-r²) measures the unpredicted portion

Pearson Correlation

- Predicted variability = $SS_{Reg} = r^2 SS_{Y}$
- Unpredicted variability = $SS_{Res} = (1 r^2)SS_{\gamma}$

• Pearson Correlation std error of est =
$$\sqrt{\frac{SS_{Res}}{df}} = \sqrt{\frac{(1-r^2)SS_Y}{n-2}}$$

 $r = \frac{SP}{\sqrt{SS_XSS_Y}} = \frac{29}{\sqrt{21.2(46)}} = 0.929 \text{ and } r^2 = 0.863$
 $SS_{Reg} = r^2 SS_Y = (0.929)^2 (46) = 39.70$

 $SS_{Res} = (1 - r^2)SS_{Y} = [1 - (0.929)^2](46) = 6.30$

SPSS Output

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.929 ^a	.862	.817	1.45261

a. Predictors: (Constant), X

Cautions for Predictions

- The predicted value is not perfect unless
 r = +1.00 or 1.00
- The regression equation should not be used to make prediction for X values that fall outside the range of values covered by the original data set
- Inclusion of extreme values may bias the regression equation prediction capability