Example 1: Normal Distribution Examples: From Table 1, about 60% of data is below 69 and about 91% of data is below 82 (shaded rows).

Table 1

Simple Frequency Distribution Table

Frequency	Percent	Cumulative Percent
28	1.1	1.1
33	1.1	2.1
34	1.1	3.2
37	1.1	4.3
40	1.1	5.3
47	3.2	8.5
49	1.1	9.6
50	4.3	13.8
51	2.1	16.0
52	1.1	17.0
53	1.1	18.1
54	2.1	20.2
55	2.1	22.3
56	2.1	24.5
57	1.1	25.5
59	3.2	28.7
60	2.1	30.9
61	4.3	35.1
62	2.1	37.2
63	1.1	38.3
64	3.2	41.5
65	3.2	44.7
66	3.2	47.9
67	3.2	51.1
68	5.3	56.4
69	4.3	60.6
71	3.2	63.8
72	3.2	67.0
73	5.3	72.3
74	3.2	75.5
75	4.3	79.8
77	2.1	81.9
78	3.2	85.1
79	1.1	86.2
80	1.1	87.2
81	2.1	89.4
82	1.1	90.4
83	2.1	92.6
84	2.1	94.7
85	1.1	95.7
86	1.1	96.8
95	1.1	97.9
98	1.1	98.9
100	1.1	100.0

Exercise 2 – Descriptive Statistics of pass4th variable from ODE table.

Table 2

Descriptive Statistics: Mean, Median, and Mode

Statistics	Values
Mean	64.37
Median	66.50
Standard Deviation	15.29

N = *94*

Exercise 3: z-score for Bluffton and VanBuren with interpretations.

From the ODE data table, we know that for the pass4th variable that M = 64.37 and SD = 15.29.

Bluffton schools:

If we would like to know how the Bluffton schools did relative to the rest of the schools that pass4th variable in ODE table we would compute Bluffton's z-score or standard score.

Bluffton observed score; *X* was 79, so its z-score is:

$$z = \frac{X - M}{S} = \frac{79 - 64.37}{15.29} = 0.96$$

The positive 0.96 tells us that Bluffton schools' scored above the mean of all the schools or their mean score is **0.96** standard deviation above the mean

 $(79 = 64.37 + 0.96 \times 15.29)$. The percentile for this z-score (see z-score cumulative table) is 0.8315 or **83.15%** (0.8315 x 100). This means that 83.15% of the rest of the schools had their pass4th scores below that of Bluffton or that Bluffton's pass4th score is above 83.15% of the rest of the schools.

VanBuren schools:

If we would like to know how the VanBuren schools did relative to the rest of the schools for the pass4th variable in ODE table we would compute VanBuren's z-score or standard score. VanBuren's observed score, X was 57, so its z-score is:

$$z = \frac{X - M}{S} = \frac{57 - 64.37}{15.29} = -0.48$$

The negative 0.48 tells us that VanBuren school scored below the mean of all the schools or VanBuren's mean score is **0.48** standard deviation below the mean ($-0.48 = 64.37 - 0.48 \times 15.29$). The percentile for this z-score (see the z-score cumulative table) is 0.3156 or **31.56%** (0.3156 x 100). This means that 31.56% of the rest of the schools had their pass4th scores below that of VanBuren or that VanBuren's pass4th score is higher than only 31.56% of the rest of the schools. One may also state that 68.44% (100 - 31.56) of the schools score higher than VanBuren for the pass4th variable.

Exercise 4 - The Normal Curve

Question 1. The normal distribution of IQ scores is 100 with a standard deviation of 16. If an individual with a tested IQ of 70 or below is considered mentally retarded, what percentage of the population would be classified retarded?

First commute the z-score and from the z-score probability table in Appendix, determine the percent less than that z-score.

$$z = \frac{X - M}{S} = \frac{70 - 100}{16} = -1.88$$

For z < -1.88, percent is 3.01%

State Answer: Therefore, **3.01%** of the population is considered retarded.

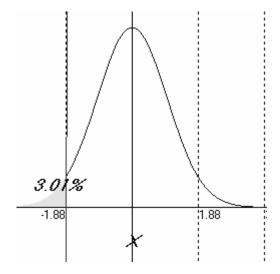


Figure 1. From normal curve: Percent < z = -1.88.

Question 2. If an IQ of 140 or above is necessary for a person to be considered mentally gifted, what percentage of the population is mentally gifted?

First commute the z-score and from the z-score probability table in Appendix, determine the percent above that z-score.

$$z = \frac{X - M}{S} = \frac{140 - 100}{16} = 2.50$$

For z > 2.50, percent is 0.62%

State Answer: Therefore, **0.62%** of the population is considered gifted.

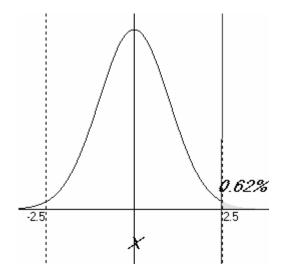


Figure 2. From normal curve: Percent > z = 2.50.

Question 3. If the range of "average" IQ scores is 90 to 110, what percentage of the population is considered average in intelligence?

First commute the z-scores and from the z-score probability table in Appendix, determine the percent between both z-scores.

$$z = \frac{X - M}{S} = \frac{90 - 100}{16} = -0.63$$
$$z = \frac{X - M}{S} = \frac{110 - 100}{16} = 0.63$$

For z = -0.63, percent is 26.43% For z = +0.63, percent is 73.57% Difference is 73.57 - 26.43 = 47.14%

State Answer: Therefore, *47.14%* of the population has average IQ score.

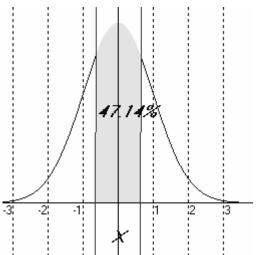


Figure 3. From normal curve: Percent between z = -0.63 and z = +0.63