One-Sample T Test Unknown Population Variance

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Hypothesis

Null hypothesis, H_0 : sample mean is the same as the population mean H_0 : sample mean = μ Alternative Hypothesis, H_a : a. sample mean is not the same as population mean, or b. sample mean is > population mean, or c. sample mean is < population mean

Assumptions

- We know:
 - Given population mean
 - Unknown population variance (s²)
 - Use sample variance, s^2 to estimate s^2
 - Standard error is

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Test Statistics

- Since we do not know the population variance, we use the *t-distribution* rather than the standard normal distribution, z:
- At large sample size, t-distribution approximates the normal distribution

$$s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

• Robust enough to be used even for cases when we would use the z statistics

Example 1

 We need to test the hypothesis that a sample of n = 25, with a mean of 170 and standard deviation of 6 is the same as the population mean of 165 at a significance level of alpha

= 0.05 (two-tailed test) whether:

$$-$$
 H₀: 170 (**M**) = 165 (**µ**)

- *Let a* = 0.05

$$t_{stat} = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} = \frac{170 - 165}{1.2} = 4.17$$

$$s_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{6}{\sqrt{25}} = 1.2$$

Conclusion: Example 1

- Two-Tailed Test (non-directional hypothesis)
- Probability p-value (reject H₀):
 Pr(t >= 4.17) = 0.000171,
 - So *p*-value = 0.000343 =< 0.05

MS Excel: TDIST (test statistics, df, tails) MS Excel: TDIST(4.17, 24, 2) = 0.000343 = p-value

- Critical Value (reject H_0):
 - $t_{cv} = 2.064 (df = 24, a = 0.05)$

t-statistics or *t*-stat >= $t_{a/2}$ or 4.17 >= 2.064

So sample mean of 170 is not equal to population mean of 165

Example 2

• A study was done to evaluate whether the population mean was

greater than 7. A sample of **60** yield *M* = **7.25** and *SD* = **1.05**.

$$s_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{1.05}{\sqrt{60}} = 0.1356$$

$$- H_0: 7.25 (M) = 7 (\mu)$$

$$- H_{a}: M > \mu$$

- *Let a* = 0.05

$$t_{stat} = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} = \frac{7.25 - 7}{0.1356} = 1.84$$

Conclusion: Example 2

- One-Tailed Test (directional hypothesis)
- Probability p-value (reject H₀):
 Pr(t >= 1.84) = 0.0354, So p-value = 0.0354 =< 0.05
 MS Excel: TDIST (test statistics, df, tails)
 MS Excel: TDIST(1.84, 59, 1) = 0.0354 = p-value
- Critical Value (reject H₀): t_{.cv} = 1.671 (df = 59, a = 0.05) t-statistics or t-stat >= t_a or 1.84 >= 1.671 So sample mean of 7.25 is not equal to population mean of 7