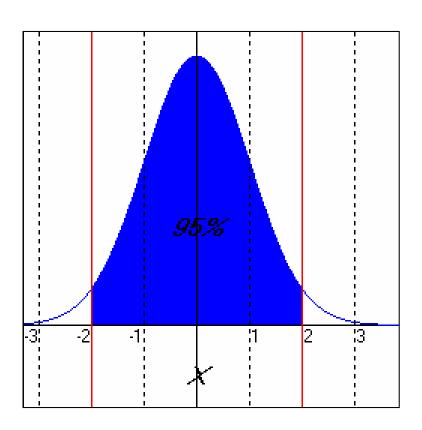
Standard Score (z-score)


Course: Statistics 1

Lecturer: Dr. Courtney Pindling

Standard Deviation and Normal Curve

- For normal curve, the number of standard deviations about the mean gives the percent of data about the mean
- The standard normal curve has mean = 0
 and standard deviation = 1
- Normal Curve:
 - 68% of data within -1S and +1S of mean
 - 95% of data within -2S and + 2S of mean
 - 99% of data within -3S and + 3S of mean

Standard Normal Curve

Standard Score

- **z-score**, standard score, is the number of standard deviations from the mean
- Formula for **z** is:

$$z - score$$
: $z = \frac{Observed\ S\ core\ -\ Mean}{S\ tandard\ D\ eviation} = \frac{X - M}{SD}$

- z is the z-score
- X is the observed score
- M is the mean
- S is the standard deviation of the data set

Use of z-score *Standard Score*

- A simply way of tell how far a score is from the mean in standard deviation units
 - Positive z score indicates score is above the mean
 - Negative z score indicates score is below the mean
- To find the location of a score relative to the normally distributed variable
- It is a normalized measure that allows for comparisons between different distributions
- It is a derived score (from original data scores)

Standard Scores of Data

$$z = \frac{X - M}{SD} = \frac{82 - 85.7}{2.50} = -1.48$$

$$z = \frac{X - M}{SD} = \frac{89 - 85.7}{2.50} = +1.32$$

82 83 84 85 85 86 86 87 **89** 90

Comparing Different Distributions

Course	Raw Data	Mean	Standard Deviation
Math	78	75	6
Science	115	103	14
English	57	52	4

Which Subject the John did best in relative to rest of class?

Comparing Different Distributions

Math:
$$z = \frac{X - M}{SD} = \frac{78 - 75}{6} = +0.5$$

Science:
$$z = \frac{X - M}{SD} = \frac{115 - 103}{14} = +0.86$$

English:
$$z = \frac{X - M}{SD} = \frac{57 - 52}{4} = +1.25$$

John did best **English** relative to rest of class, since his **z-score was highest** in English.

Other Standard Scores

- Disadvantage of z-scores
 - Negative values, mean = 0, and decimal fractions
- Alternate to z-score are such scores as T scores
- T score calculated by formula (M = 50, SD = 10)

t scores:
$$t = 10z + 50$$

 Next slides show other standard scores calculated by formula:

Other Standard Scores: $\sigma z + \mu$

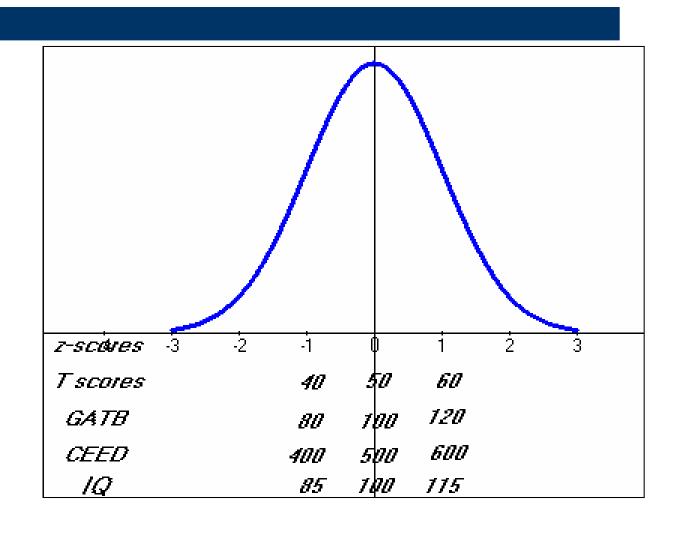
T score Example

$$z = \frac{X - M}{SD} = \frac{82 - 85.7}{2.50} = -1.48$$

t scores: t = 10z + 50

$$T = 10(-1.48) + 50 = 35.2$$

82 83 84 85 85 86 86 87 **89** 90


Standard Score Systems

Other Standard Scores: $\sigma z + \mu$

System	μ	σ
z scores	0	1
T scores	50	10
GATB	100	20
CEEB	500	100
IQ	100	15

GATB – General Aptitude Test Battery CEED – College Entrance Examination Board IQ – Intelligence Quotients

Normal Curve and Standard Scores

