Measure of Variation (Dispersion)

Course:Statistics 1Lecturer:Dr. Courtney Pindling

Variability

- Central Tendency yields a single value that best describe a group of data
- Variability is a measure of the fluctuation of scores about a measure of central tendency
 - Range
 - Variance
 - Standard Deviation

Two Distributions

• Same central tendency but different variability

VAR00001

Range

- Maximum score Minimum score 90 - 82 = 8
- Easily affected by extreme scores
- Tells us nothing about *pattern* of the distribution

82	83	84	85	85	86	86	87	89	90
----	----	----	----	----	----	----	----	----	----

Deviations and Sum of Squares

- The algebraic sum of deviations of each data point from the mean is always 0
- **Squared Deviation** is just the square of difference from mean
- Sum of Square, SS

 $SS = \Sigma (X - \overline{X})^2 = 56.1$

 Variance is the Average Sum of Square Deviations from the mean

Variance =
$$\frac{SS}{N} = \frac{\Sigma(X - \overline{X})^2}{N} = \frac{56.1}{10} = 5.67$$

X	$(X - \overline{X})$	$(X - \overline{X})^2$
86	0.3	0.09
83	-2.7	7.29
90	4.3	18.49
87	1.3	1.69
89	3.3	10.89
82	-3.7	13.69
84	-1.7	2.89
85	-0.7	0.49
86	0.3	0.09
85	-0.7	0.49
	$\Sigma(X - \overline{X}) = 0$	56.1

Variance

• The Average Sum of Square Deviations from the mean: **SS/N**

Variance =
$$\frac{SS}{N} = \frac{\Sigma(X - \overline{X})^2}{N} = \frac{56.1}{10} = 5.61$$

Population - Sample *Variance*

• Population Variance: SS/N

$$\sigma^2 = \frac{SS}{N} = \frac{\Sigma(X - \mu)^2}{N} = \frac{56.1}{10} = 5.61$$

• Sample Variance: SS/(N-1)

$$S^{2} = \frac{SS}{N-1} = \frac{\Sigma(X-\overline{X})^{2}}{N-1} = \frac{56.1}{9} = 6.23$$

Standard Deviation

- Most widely used measure of variability
- It's the square root of the variance

$$S = \sqrt{\frac{\Sigma (X - \overline{X})^2}{N}}$$

• It is a measure of the spread of data about the mean

Standard Deviation = $\sqrt{Variance}$

Standard Deviation - Spread

VAR00001

Population - Sample *Standard Deviations*

• Population

$$\sigma$$
 (sigma) = $\sqrt{\sigma^2} = \sqrt{5.61} = 2.37$

• Sample

$$S = \sqrt{S^2} = \sqrt{6.23} = 2.50$$

SPSS Variability Measures

Statistics

VAR00003

Ν	Valid	10	
Std. Deviation	2.49666		
Variance	6.233		
Range		8.00	

82	83	84	85	85	86	86	87	89	90
----	----	----	----	----	----	----	----	----	----

Interquartile Range (IQR)

- Q2 is Median, 50 percentile
- Q1 is the 25 percentile
- Q3 is the 75 percentile
- IQR is the Interquartile range:
 IQR = Q3 Q1
- The *IQR* is more stable than the range of often is used instead of it

Box Plot

- A graphical illustration of both central tendency and dispersion
- Outliers are values some distance outside the values of the Box Plot
- Show:
 - Minimum,
 - Q1: 25 percentile,
 - Median,
 - Q3: 75 percentile and
 - Maximum

