Appendix B Formula Summary

Appendix B Formula Summary

Frequency: midpoints - proportion, *p* - percentage - percentile - mean from frequency distribution - **Central Tendency**: mean - median - mode - **Variability** - range - sum of deviations - sum of square - range - variance - standard deviation - quartiles - interquartile semi-interquartile range - **Standard Score** - z-scores - other standard scores - percentile percent rank - **Normal Curve** - area under curve - NCE -

Correlation - sum of products - covariance, Pearson r - standard error of r - confidence interval of r - Spearman r

Frequency

Midpoint = $\frac{U_a - L_a}{2}$, where U_a is the upper apparent limit and L_a is the lower $N = \sum f$, where f is the frequency of each group, and N is total frequency proportion = $p = \frac{f}{N}$, where f is the frequency, and N is total frequency percentage = $p(100) = \frac{f}{N}(100)$, where f is the frequency, and N is sum of frequencies $P_{\%} = LL_i + [(\frac{n_p - C_f}{f_i}) \cdot I]$ where $P_{\%}$ = any specified percentile point LL_i = the *exact lower limit* or *real lower limit* of the group interval containing the percentile point, $P_{\%}$ n_p = number of scores or cases comprising the specified percentage for n. C_f = cumulative frequency up to but not including the percentile interval f_i = frequency within the percentile interval I = group interval size or class size

Mean from frequency:

mean = $\overline{X} = \frac{\sum f_i X_i}{n}$, where $\sum f_i X_i$ is product of frequency and score or midpoint

Central Tendency

Population mean: $\mu = \frac{\sum X}{N}$, where $\sum X$ is sum of scores, and *N* is population size Sample: $\overline{X} = M = \frac{\sum X}{n}$, where $\sum X$ is sum of scores, and *n* is sample size Median: (a) **odd** *N*, ,median = middle score of an ordered set (min to max)

(b) even N, median =
$$\frac{\text{two center scores}}{2}$$
, average of center scores

Mode: the most frequent score(s) from a simple frequency distribution

Variability

Range = $X_{max} - X_{min}$, where X_{max} is maximum score, and X_{min} is minimum score Sum of deviation from mean: $\Sigma(X - \overline{X}) = 0$, where \overline{X} is mean

Sum of square: $SS = \Sigma (X - M)^2$ or $SS = \Sigma (X - \overline{X})^2$ (definition formula) $SS = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$ (computational formula)

Population Variance = σ^2 (Sigma squared) = $\frac{\Sigma(X - \overline{X})^2}{N}$ (definition)

$$\sigma^{2} = \frac{SS}{N} = \frac{\sum X^{2} - \frac{(\sum X)^{2}}{N}}{N} \text{ (computational)}$$

Sample Variance = $s^2 = \frac{\sum (X - \overline{X})^2}{n-1}$ (definition)

$$s^2 = \frac{SS}{n-1}$$
 (computational, see SS above)

standard deviation = σ or s = $\sqrt{\text{variance}} = \sqrt{\sigma^2} = \sqrt{s^2}$

Population stadard deviation = σ (Sigma) = $\sqrt{\frac{\Sigma(X - \overline{X})^2}{N}}$ (definition)

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{SS}{N}} = \sqrt{\frac{\Sigma X^2 - \frac{(\Sigma X)^2}{N}}{N}}$$
 (computational)

Sample Variance =
$$s = \sqrt{\frac{\Sigma(X - \overline{X})^2}{n-1}}$$
 (definition)

Degrees of freedom, df, for sample variance: df = n - 1

$$s = \sqrt{s^2} = \sqrt{\frac{SS}{n-1}} = \sqrt{\frac{SS}{df}} = \sqrt{\frac{\Sigma X^2 - \frac{(\Sigma X)^2}{n}}{n-1}}$$
 (computational)

50% Quartile: Q_2 = Median (50% of scores at or below median)

25% Quartile: Q_1 = Median of first half of dataset (25% of scores at or below Q_1) 75% Quartile: Q_3 = Median of second half of dataset (25% of scores at or above Q_3) interquartile range: $IQR = Q_3 - Q_1$ semi-interquartile range = $\frac{Q_3 - Q_1}{2}$

Standard Score

$$z = \frac{X - \mu}{\sigma}$$
 or $z = \frac{X - M}{s}$ (sample, *M* is mean)

50% Quartile: Q_{50} =Median (50% of scores at or below median)

Other Standard Scores:

Other Standard Score Systems		
standard score = $z = \frac{X - \mu}{\sigma}$		
Standard Score System	μ	σ
z scores	0	1
T score	50	10
General Aptitude Test		
Battery (GATB)	100	20
College Entrance		
Examination Board (CEEB)	500	100
IQ Test	100	16

Percentile, $P_{\%}$ raw score, $X = \sigma(z) + \mu$

Example: P_{75} is X = 87.39 [given $\sigma = 2.5$ and $\mu = 85.7$; z = 0.675 for Pr(≤ 0.75)] The raw score that 75% of distribution is below: 75 percentile

Percent Rank, the percentile of a given raw score

Example: Pr_{89} (percent rank of 89), X = 89 ($\sigma = 2.5$ and $\mu = 85.7$; z = 1.32) Pr($z \le 1.32$) = 90.66 or $Pr_{89} = 90.66\%$

Normal Curve

Area under curve between various z-scores

Normal Curve Equivalence (NCE)

NCE = 21z + 50

Correlation

Sum of square of X: $SS_x = \Sigma (X - M_x)^2$ or $SS_x = \Sigma (X - \overline{X})^2$ (definition formula)

Sum of square of Y: $SS_y = \Sigma (Y - M_y)^2$ or $SS_y = \Sigma (Y - \overline{Y})^2$ (definition formula)

Sum of products: $SP = \Sigma[(X - M_x)(Y - M_y)]$ (definition formula)

 $SP = \Sigma XY - \frac{(\Sigma X)(\Sigma Y)}{n}$ (computational formula)

Covariance, $S_{xy} = \frac{\sum [(X - M_x)(Y - M_y)]}{n - 1}$

Pearson correlation coefficient, $r_{xy} = \frac{S_{xy}}{S_x S_y} = \frac{SP}{\sqrt{SS_x SS_y}}$

where S_{xy} is covariance, S_x and S_y are standard deviations of X & Y SS_x and SS_y are sum of square of X and Y

Pearson $r = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{\sqrt{N\Sigma X^2 - (\Sigma X)^2} \cdot \sqrt{N\Sigma Y^2 - (\Sigma Y)^2}}$ (computational formula)

standard error of r

$$s_r = \frac{1}{\sqrt{n-1}}$$
 (estimate of standard deviation of *r*)

Confidence interval for r

95% of all sample *r*'s fall between $0 \pm 1.96s_r$ 99% of all sample *r*'s fall between $0 \pm 2.58s_r$

Spearman correlation coefficient, r_s

Spearman rank-Difference Method

$$r_s = 1 - \frac{6 \sum D^2}{n(n^2 - 1)}$$

where r_s is correlation (population symbol is *pho* or ρ), ΣD^2 is sum of square difference between ranks, and n is number of pairs of ranks