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CHAPTER FIVE 

Correlation 

5.1 Introduction  

Correlation is a statistical technique that is used to determine if there is a 

relationship between two variables. For example, it may assess the degree and 

magnitude of the relationship between students’ high school GPA scores and their 

success in college. If there is a relationship, we say that the two variables are correlated. 

Correlation techniques measure both the strength and direction of the 

relationship that exist between two variables; so that a single value will tell us how any 

two variables are related. This single value is called the correlation coefficient, r. When 

we which to predict scores from one variable, knowing the scores of another, we use 

another statistical technique called regression. So correlation tells us if a relationship 

exists and regression enables us to use this relationship to predict one variable score, 

given the score of the other. Table 5.1.1 shows some assessment scores for five 

individual players. 

The correlation coefficient, r, ranges from values of -1 to +1. An r value of +1 

suggests that the two variables are strongly related positively; that is, as the scores of one 

variable increases, the other also increases (See Figure 5.1.1: Ability and Speed). An r 

value of -1 suggests that the two variables are strongly related negatively; as the scores of 
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one variable increases, the other decreases (See Figure 5.1.2: Ability and GPA). When 

the r value is 0, there is no relationship or no correlation (See Figure 5.1.3).   

Table 5.1.1 Correlation Example Table  

Player Ability

 

GPA

 

Speed

 

Index

 

A 1

 

5

 

1

 

3

 

B 2

 

4

 

2

 

2

 

C 3

 

3

 

3

 

4

 

D 4

 

2

 

4

 

2

 

E 5

 

1

 

5

 

3
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Figure 5.1.1 Positive correlation: Ability vs. Speed.  
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Figure 5.1.2 Negative correlation: Ability 
vs. GPA.    

Figures 5.1.1 through 5.1.3 are examples of scatterplots. In a scatterplot we show 

the X and Y coordinates of the two variables being examine for their degree of 

association. We often can often make very crude assumptions, just by looking at the 

scatterplot, about the direction and degree of the association between variables. The 

scatterplot also allows us to spot or locate pair of points that maybe outliers (extreme 

points). If the association between variables is not linear, the scatterplot may provide an 
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early clue of this association.  In preparing a scatterplot, we represent the predictor 

variable (independent variable) on the X axis or the abscissa and the criterion or 

dependent variable on the Y axis or ordinate. We may use regression technique, in later 

chapter, to draw a “best fit” straight line (the regression line) through the center of the 

scattered points on the scatterplot.  

Correlation is concern about the relationship or association between variables. 

Correlation coefficient, r is a measure of the degree and magnitude of the relationship 
between variable. 

Scatterplot is a figure in which pairs of individual data points are plotted on the XY 
coordinates graph. 

Predictor variable is the independent variable from which predictions are made. 

Criterion variable is the dependent variable to be predicted. 

Regression line is a “best fit” straight line drawn on a scatterplot. 
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Figure 5.1.3 No correlation: Ability vs. Index.   
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If the relationship between the variables is linear and/or the variables are interval 

or ratio scales, we may use the correlation coefficient determined by the Pearson r. For 

nonlinear relationships and/or the variables are ordinal scales, we may use Spearman rank 

correlation coefficient, rs. 

Pearson Correlation 

The most common correlation measurement is the Pearson correlation (or 

Pearson product-moment correlation). The Pearson correlation measures the degree and 

direction of the linear relationship between two variables. 

Three assumptions are made about the Pearson’s correlation coefficient, r: 1. it 

requires interval or ratio data, 2. the relationship between variables must be linear, and 3. 

the technique requires pairs of data values. 

The Pearson correlation (or product-moment correlation) measures the degree and 
direction of the linear relationship between two variables. 

 

Table 5.1.2 shows the Pearson r for the data in Table 5.1.1. This display is often 

called a correlation coefficient matrix because is shows r for more than two variables.  

Table 5.1.2 Correlation Matrix for Correlation Example  

Variable Ability GPA Speed Index 
Ability 1 -1** 1** 0 

GPA  1 -1** 0 

Speed   1 0 

Index    1 

**Correlation is significant at the 0.01 level (2-tailed). 
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Covariance 

The correlation coefficient is based on a statistics called the covariance. The 

covariance is a statistics that describes the degree which two variables vary together. 

When high scores of one variable tend to pair with high scores on the other, the 

covariance will be large and positive (Figure 5.1.1). When high scores of one variable 

tend to pair with low scores on the other, the covariance will be large and negative 

(Figure 5.1.2). Finally, when high scores on one variable are paired about the same with 

both high and low scores on the other, the covariance will be near zero (Figure 5.1.3). 

The covariance is a statistics that represents the degree that two variables vary together. 

 

Mathematically, the covariance is average sum of the product deviations of the X 

and Y variables from their mean. It is given by the formula: 

covxy
X X Y Y

n 1   (definition formula) 

The computational formula for the covariance is: 

covxy
XY X Y

n
n 1  (computational formula)  

Example 5.1.1: Find the covariance of the Verbal and Quant variables in Table 

5.1.3.  From Table 5.1.3 we compute: XY = 133891, X = 1144, and Y = 1162, so  

covxy
XY X Y

n
n 1

133891
1144 1162

10
9 106.47
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Table 5.1.3 Covariance Example 

VERBAL (X) QUANT (Y) XY 
108.00 111.00 11988 
133.00 132.00 17556 
109.00 114.00 12426 
118.00 110.00 12980 
94.00 98.00 9212 

111.00 103.00 11433 
107.00 116.00 12412 
125.00 130.00 16250 
120.00 122.00 14640 
119.00 126.00 14994 

X = 1162 Y = 1144 XY = 133891 

 

The magnitude of the covariance is dependent upon the units of measurements for 

X and Y. A measurement of either of these variables in inches will give a larger 

covariance than if the measurements were in feet. The correlation coefficient, however, is 

not affected by the units of measurement. Conceptually, the Pearson correlation is the 

covariance of X and Y divided by the variability of X and Y separately or the degree to 

which X and Y vary together divided by the degree to which they vary separately. This 

leads to a formula for Pearson r as:  

r covariance of X and Y
variability of X and Y separately

covxy
sxsy  (definition formula)  

where sx and sy are the standard deviations of X and Y respectively 

So the correlation coefficient (Pearson r) for the Example 5.1.1 is 0.86 when we 

use the covariance and individual standard deviations of X and Y.  

r
covxy
sxsy

106.47
10.94 11.28 0.86
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The computational formula for the Pearson r is: 

r N XY X Y
N X2 X 2 N Y2 Y 2

  
The computational Table 5.1.4 shows how to use the computational formula 

above to compute the correlation coefficient.  

Table 5.1. 4 Pearson r Computational 1 

X Y XY X2 Y2 

108 111 11988 11664 12321 

133 132 17556 17689 17424 

109 114 12426 11881 12996 

118 110 12980 13924 12100 

94 98 9212 8836 9604 

111 103 11433 12321 10609 

107 116 12412 11449 13456 

125 130 16250 15625 16900 

120 122 14640 14400 14884 

119 126 14994 14161 15876 

X =  
1144  

Y = 
1162  

XY =  
133891  

X2 =  
131950  

Y2 =  
136170  

( X)2 =  
1308736  

( Y)2 =  
1350244     

 

r N XY X Y
N X2 X 2 N Y2 Y 2

 

r
10 133891 1144 1162

10 131950 1308736 10 136170 1350244
0.86  

Before we introduce another useful computation formula for the Pearson r, let us 

examine a few concepts. The sum of product deviation, SP, is a similar concept to sum 
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of square deviation, SS. The sum of product can be computed from either the 

definitional or computation formula shown below. 

        SP X MX Y MY   (definition formula) 

SP XY X Y
n  (computational formula)  

Using the sum of square deviations for each variable,  

SSX X MX
2

 

SSY Y MY
2

  

Pearson r is computed by the formula and Table 5.1.5, so r = 0.86. Figure 5.1.4 

shows the scatterplot for the X and Y variables with a best fit the regression line. 

r SP
SSXSSY

958.2
1076.4 1145.6

0.86  

Table 5.1.5 Pearson r Computation 2 

Scores Deviations Squared Deviations Products 

X Y X-MX Y-MY (X-MX)2 (Y-MY)2 (5)(6) 

108 111 -6.4 -5.2 40.96 27.04 33.28 

133 132 18.6 15.8 345.96 249.64 293.88 

109 114 -5.4 -2.2 29.16 4.84 11.88 

118 110 3.6 -6.2 12.96 38.44 -22.32 

94 98 -20.4 -18.2 416.16 331.24 371.28 

111 103 -3.4 -13.2 11.56 174.24 44.88 

107 116 -7.4 -0.2 54.76 0.04 1.48 

125 130 10.6 13.8 112.36 190.44 146.28 

120 122 5.6 5.8 31.36 33.64 32.48 

119 126 4.6 9.8 21.16 96.04 45.08     

SSX=1076.4

 

SSY=1145.6

 

SP=958.2 
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Figure 5.1.4 Scatterplot for the Correlation Example  

The significance of the correlation coefficient, r is dependent upon the sample 

size and the level of confidence one wishes to have for the correlation coefficient. In the 

SPSS correlation computational output, this is related to the p-value or the significance 

level. If the significance level, p-value, is very small (less than 0.05, for 95% 

confidence), then the correlation is significant and the two variables are linearly related 

(especially so for the Pearson r). If the significance level, p-value is very large (or p > 

0.50) the correlation is not significant, and the two variables are not linearly related. 

Testing the significance of the correlation coefficient will be discussed in later chapters. 

However, most textbooks use the following scheme in Table 5.1.6 to interpret the value 

of the correlation coefficient as follows:  
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Table 5.1.6 Interpretations for Correlation Coefficient  

Correlation Coefficient value  Interpretation 

>= 0.80 Very Strong 

0.60 to 0.80 Strong 

0.40 to 0.60 Moderate 

0.20 to 0.40 Low 

=< 0.20 Very Low 

    

Table 5.1.7 shows a correlation matrix for several variables of the CPS50 

database. Various asterisk shows whether there is a relationship between variables and 

the significant level of each relationship; this will be explain later. Figure 5.1.5 shows the 

SPSS procedure for computing the Pearson correlation coefficient for two or more 

variables.  

Table 5.1.7 

Correlation Matrix for First 25 Data for CPS50  

Variables independent 
living scale 

Self 
confidence 

score 

Academic 
aptitude test 

Personal 
adjustment  

scale 

Social 
skills 

inventory 

Age of 
student 

independent 
living scale 

1

 

0.774**

 

0.37

 

0.623**

 

0.707**

 

-0.687** 

 

Self 
confidence 

score  

1

 

0.559**

 

0.764**

 

0.863**

 

-0.720**

 

Academic 
aptitude test   

1

 

0.552**

 

0.422*

 

-0.405*

 

Personal 
adjustment 

scale    

1

 

0.669**

 

-0.31

 

Social skills 
inventory     

1

 

-0.618**

 

Age of 
student      

1

 

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
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Figure 5.1.5  SPSS correlation procedure: Analyze -> Correlate (Pearson).  

Factors Affecting Correlation 

There are many factors to consider when evaluating the correlation between 

variables. These are some factors that may affect the correlation coefficient: range 
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restriction, nonlinearity of scores, heterogeneous sub-samples, extreme scores, and 

sample size. 

1. Not all the range of variables X and Y are applicable for all comparisons. It 

might be more appropriate, for example, to restrict a correlation of height 

and age to an age range of 4 to 17 to obtain a more meaningful correlation. 

So when a researcher restricts the range of some variables, the correlation 

may be restricted to that range limitation. 

2. When the distribution is not linear the correlation will be biased, because 

the premise of Pearson product-moment analysis is based on the data 

being linear. There are other techniques that have been developed to 

handle non-linear relationships between variables. 

3. Heterogeneous sub-samples is a data distribution that can be subdivided 

into two or more distinct distributions based on sub-categories within a 

variable or different variables that have been combined into one 

distribution. For example, if you combine scores for male and female into 

one distribution of scores for height, you might get a different correlation 

if the gender scores are compared against height separately. The 

combination of gender into one distribution could be an example of a 

heterogeneous sub-sample. 

4. Extreme values or outliers are scores that are too large or small. These 

large of small scores may increase or decrease the correlations coefficient. 

A scatterplot or other statistical techniques can help identify these extreme 

scores that often should not be included in the correlation analysis. 
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5. The sample size should be large enough to provide a meaningful basis on 

which to make your comparison between variables; typically the 

Spearman rank correlation analysis is used instead of the Pearson 

correlation analysis when the sample size is small. 

There are many other types of correlation techniques developed to handle various 

restrictions on other data types and the nature of the variables being compared. Many of 

these techniques are modifications of the Pearson product-moment technique. The 

Spearman rank correlation, for example, calculates the product-moment correlation on 

ordinal measurements or ranked scores. The Spearman rank correlation will be discussed 

in the next section of this chapter. Table 5.1.8 shows some other correlation techniques 

used for various situations involving the type and nature of variables being evaluated.  

Table 5.1. 8 Other Correlation Techniques 

Point-biserial r One dichotomous variable (yes/no; male/female) and one interval or 
ratio variable 

Biserial r One variable forced into a dichotomy (grade distribution 
dichotomized to “pass” and “fail”) and one interval or ratio variable 

Phi coefficient Both variables are dichotomous on a nominal scale (male/female vs. 
high school graduate/dropout) 

Tetrachoric r Both variables are dichotomous with underlying normal distributions 
(pass/fail on a test vs. tall/short in height) 

Correlation ratio There is a curvilinear rather than linear relationship between the 
variables (also called the eta coefficient) 

Partial correlation

 

The relationship between two variables is influenced by a third 
variable (e.g., mental age and height, which is influenced by 
chronological age) 

Multiple R The maximum correlation between a dependent variable and a 
combination of independent variables ( a college freshman’s GPA as 
predicted by his high school grades in Math, chemistry, history, and 
English) 

 




