Tony's Research

Exercises Answer Key

Descriptive Statistics

Section 1.0: Introduction and Scales of Measurements

Section 2.1: Central Tendency

Section 2.2: Frequency

Section 2.3: Stem-and-Leaf Display

- Section 3.1: Variability
- Section 3.2: Boxplot and Outliers
- Section 4.1: Standard Score
- Section 4.2: Normal Curve
- Section 5.1: Pearson Correlation
- Section 5.2: Spearman Correlation

Inference Statistics

- Section 6.1: Introduction to Hypothesis Testing
- Section 6.2: One-Sample Mean for Known Sigma
- Section 6.3: One-Sample Mean for Unknown Sigma
- Section 7.1: One-Sample Correlation ($\rho = 0$)
- Section 7.1: One-Sample Correlation ($\rho = a$)
- Section 8.1: Two-Sample Means (Independent Samples and Homogeneous Variance)
- Section 8.2: Two-Sample Means (Independent Samples and

Non-homogeneous Variance)

- Section 8.3: Two-Sample Means (Dependent Samples)
- Section 9.1: Linear Regression Equations and Plots
- Section 9.2: Hypothesis Testing of Linear Regression
- Section 10.1: Chi- Square Goodness of Fit Test

Section 10.1: Chi- Square Test for Independence

Section 1.0: Basic Math and Scales of Measurements

Exercises 1.0

1. a. R; b. N; c. R; d. I; e. O; f. I; g. O; h. N 2. a. N; b. I; c. R; d. N; e. I; f. O; g. R 3. a. $I_{Low} = 40 - 2.36(v7) = 33.7560$ b. $I_{High} = 40 + 2.36(v7) = 46.2440$ 4. M = 50 - 3(0.84) = 47.485. 16 + (15 - 8) * 5 - 2 = 16 + (7 * 5) - 2 = 496. $7^2 + 1*2 = 49 + 2 = 51$ 7. $2^3 + 3*2 + 15/3 = 8 + 6 + 5 = 19$ 8. Computation table

Ă	Ĭ	ΔI	Å
5	4	20	25
4	3	12	16
6	2	12	36
3	1	3	9
2	0	0	4
∑X	∑Y	∑XY	∑X²
20	10	47	90

9. Computation table

X	X – 12	X-11.2
13	1	1.8
12	0	0.8
8	-4	-3.2
14	2	2.8
9	-3	-2.2
∑X	∑(X-12)	∑(X- 11.2)
56	-4	0

10. Given $\sum X = 20$ and $\sum XY = 40$ a. $(\sum X)^2 = 20^2 = 400$ b. $\sum X(XY) = 20 * 40 = 800$ c. M = 3 since 2+5+M+7+3 = 20, when M = 3

11. a. 3(0.2347) = 0.7041; b. (0.2347)2 = 0.0551; c. (0.2347)(0.4831) = 0.1134

12. Given $\sum X = 12$, $\sum Y = 25$, $\sum XY = 360$

 $\frac{\sum XY - \sum X(\sum Y)}{(\sum Y)^2 - \sum Y} = \frac{360 - 12(25)}{25^2 - 25} = \frac{360 - 300}{625 - 25} = \frac{60}{600} = \frac{1}{10} = 0.1$

Exercises 2.1

- 1. a. Mean = 1, median = 1.5, mode = 8 b. Mean = 0.46, median = 0.395, mode = 0.34c. Mean = **4.8182**, median = **5**, mode = **1**
- 2. a. Mean = 2.3832, median = 2.2361, mode = v3 b. Mean = **34.375**, median = **33**, mode = **33** c. Mean = 0.1, median = 0, mode = 1
- 3. GPA = 43/16 = **2.69**

 Course	Credits	Grade	Cr x Gr
 English	3	4	12
Mathematics	4	2	8
Biology	4	3	12
History	2	1	2
Spanish	3	3	9
	$\Sigma Cr = 16$		$\Sigma Gr = 4$

4. Becky must get a **94** on the next quiz.

$$\frac{65+80+85+78+78+X}{6} = 80 = \frac{386+X}{6}$$

80(6) = 386 + X; So X = 480 - 386 = 94

5. The sum of the scores of the 25 students is 1958 (25 x 78) plus 154 from the two other students bring sum to 2104, So new average is 2104/27 = 77.93

 $\Sigma Gr = 43$

- 6. Meal 1: Mean = 7, median = 5, mode = 5Meal 2: Mean = 6.88, median = 5, mode = 10Meal 3: Mean = 8.57, median = 10, mode = 10
- 7. Twenty seven student average 80, so their sum is 1600 (27 x 80) The sum of 20 students with 90 is 1800; this is more than the sum of all, So, the answer is *no*.

8. The median is the best statistics for measure of CT when the data contains extreme points; since it is the least influenced by outliers or extreme points.

- 9. a. The median for {8, 10, **11, 12**, 14, 17} is average of 11 and 12, so median is **11.5 b**. The median for $\{1, 2, 2, 4, 4, 5, 6\}$ is the middle score, so median is 4
- 10. Histogram: Mean = **13.08**, median = **14**, mode = **14**
- 11. Data Table: Mean = 11.52, median = 12, mode = 12
- 12. Data Table: X: Mean = 3, median = 3
 - *Y*: Mean = **2.33**, median = **2**
 - (X 3): Mean = **0**, median = **0**

T		
Exercises	L	. L
	_	

Question 1. For 30 scores, the frequency and cumulative frequency is shown below

	ne	quency		UCIOW	
	Upper		Rel		Cum
Interval	Limit	Freq	Freg	% Freg	Freg
51-60	60	1	0.0333	3.3333	1
61-70	70	5	0.1667	16.6667	6
71-80	<u>80</u>	14	0.4667	46.6667	20
81 -90	90	5	0.1667	16.6667	25
91-100	100	5	0.1667	16.6667	30

Question 2. From Dataset: Frequency, mean = 19.05 and median =19.2

Interval	Upper Limit	Freq	Rel Freg	% Freg	Cum Freg
15-16	16	2	0.0800	8.0000	2
17-18	18	6	0.2400	24.0000	8
1 9-20	20	6	0.2400	24.0000	14
21-22	22	10	0.4000	40.0000	24
23-24	24	1	0.0400	4.0000	25

Question 3. From frequency histogram mean = $55.15 = \sum(MP*freq)$

		Rel	
Midpoint	Frequency	Freg	Midpt * f
24.5	2	0.0645	1.580645
34.5	4	0.1290	4.451613
44.5	6	0.1935	8.612903
54.5	5	0.1613	8.790323
64.5	8	0.2581	16.64516
74.5	4	0.1290	9.612903
84.5	2	0.0645	5.451613

Question 4. From frequency table: Histogram

Mean =**75.65** $= \sum(MP*freq)$

Interval	Freq	Cf	Ср	CP %
90-99	4	26	1.0000	100.0000
80-89	6	22	0.8462	84.6154
70-79	8	16	0.6154	61.5385
60-69	5	8	0.3077	30.7692
50-59	3	3	0.1154	11.5385

Median = **75.65** and 75 percentile =

$$P_{50\%} = LLi + \left[\left(\frac{n_p - C_f}{f_i}\right) \cdot I\right] = 69.5 + \left[\left(\frac{(13 - 8)}{8}\right) \cdot 10\right] = 75.75$$
$$P_{75\%} = LLi + \left[\left(\frac{n_p - C_f}{f_i}\right) \cdot I\right] = 79.5 + \left[\left(\frac{(19.5 - 16)}{6}\right) \cdot 10\right] = 85.33$$

Question 5. From frequency histogram: Mean = $66.75 = \Sigma(MP*freq)$

Interval	Freq	Cf	Ср	CP %
80-84	1	16	1.0000	100.0000
75-79	2	15	0.9375	93.7500
70-74	3	13	0.8125	81.2500
65-69	4	10	0.6250	62.5000
60-64	3	6	0 3750	37 5000
55-59	2	3	0.1875	18,7500
50-54	1	1	0.0625	6.2500

Median = 67

$$P_{50\%} = LLi + [(\frac{n_p - C_f}{f_i}) \cdot I] = 64.5 + [(\frac{(8-6)}{4}) \cdot 5] = 67$$

Interval	Freq	Cf	Ср	CP %
70-79	4	26	1.0000	100.0000
60-69	6	22	0.8462	84.6154
50-59	8	16	0.6154	61.5385
40-49	5	8	0.3077	30.7692
30-39	3	3	0.1154	11.5385

Question 6. Mean = **55.64** and Median = **55.75**

$$P_{50\%} = LLi + \left[\left(\frac{n_p - C_f}{f_i} \right) \cdot I \right] = 49.5 + \left[\left(\frac{(13 - 8)}{8} \right) \cdot 10 \right] = 55.75$$

Question 7. (a) M = 46.4 and (b) M = 16

(a)
$$M = \frac{\Sigma X}{N} = \frac{232}{5} = 46.4$$
 (b) $M = \frac{\Sigma f_i X_i}{\Sigma f_i} = \frac{400}{25} = 16$

Exercises 2.3

	1.	Stem	and	leaf	from	data
--	----	------	-----	------	------	------

frequency	Stem	Leaf
0	4	
1	5	8
4	6	3579
12	7	022244666688
8	8	00025568
5	9	22358
0	10	

2. Stem and leaf

frequency	Stem	Leaf
2	15.	89
4	16.	1334
2	17.	05
4	18.	1255
2	19.	24
5	20.	23399
3	21.	148
3	22.	001

Histogram from stem and leaf

3 Median is 54 (from Midpoint of Stem: 5 | 2 3 3 **4** 5 6 7 (the 50 percentile)

- 4. Stem and leaf from histogram (midpoint of class intervals)
- 24. | 5 5 34. | 5 5 5 5 44. | 5 5 5 5 5 54. | 5 5 5 5 5 64. | 5 5 5 5 5 5 74. | 5 5 5 5 84. | 5 5

5. Reconstructed stem and leaf into class interval size of 5

Original	Reconstructed
3 0111278 4 24567889 5 333345678 6 112445 7 1122789	3 0 1 1 1 2 3 7 8 4 2 4 5 4 6 7 8 8 9 5 3 3 3 3 4 5 5 6 7 8 6 1 1 2 4 4 5 6 7 1 1 2 2 7 7 8 9

6. Stem and leaf from data:

frequency	Stem	Leaf
0	3	
1	4	6
1	5	7
1	6	4
4	7	2457
8	8	34455668
5	9	02255
0	10	

7. Stem and leaf from frequency table Original Stem and leaf conversion

Х	Frequency	2 0 0
100	2	$4 \mid 0 \ 0 \ 0 \ 0 \ 0$
80	4	6 000000 8 0000
60	7	10 0 0
40	5	10 0 0
20	2	

8. Stem and leaf and mean, median from histogram

Mean = \sum (MP*Freq) = 82.5

Median = **85** (by observation, the mean of 8th and 9th ordered score is = (85 + 85)/2 = 85 $P_{50\%} = LLi + [(\frac{n_p - C_f}{f_i}) \cdot I] = 84.5 + [(\frac{(8-6)}{4}) \cdot 1] = 85$

(a) Stem and leaf display

5	5
6	55
7	555
8	5555
9	555555

MP	Freq	Cf	Ср	CP %
55	1	1	0.0625	6.2500
65	2	3	0.1875	18.7500
75	3	6	0.3750	37.5000
85	4	10	0.6250	62.5000
95	6	16	1.0000	100.0000

Exercises 6.2

1. The standard error is the standard deviation divided by the square root of the sample size, n

- 2. The sampling distribution has mean, μ and standard deviation, $s_M = s/v(n)$
- 3. As *n* increases, s_M decreases

$$\sigma_M = \frac{4}{\sqrt{64}} = \frac{4}{8} = \frac{1}{2} \quad \sigma_M = \frac{4}{\sqrt{9}} = \frac{4}{3} = 1\frac{1}{3}$$

4. The sampling distribution of means will have a mean equals to μ and standard deviation of s_M .

5. Given $\mu = 40$ and s = 2

$$z = \frac{M - \mu}{\frac{\sigma}{\sqrt{n}}}$$

n	M	z-score
25	35	-12.5
25	45	12.5
16	35	-10
16	45	10

- 6. Given s = 2 and $\mu = 8$ and sample M = 6.09, n = 11, $z = -3.1659 < z_{CV} = -1.960$. So, reject H_0 : $\mu = 8$.
- 7. Given s = 10 and $\mu = 69$ and sample N = 900: a. $CI_{95} = 69 \pm 1.960 (0.3333) = 68.35$ to 69.65 b. $CI_{99} = 69 \pm 2.5758 (0.3333) = 68.14$ to 69.86
- 8. Given s = 8 and $\mu = 65$ and sample, n = 60, M = 70 H_0 : $\mu = 65$; H_a : $\mu > 65$, a = 0.05 $s_M = 1.0328$, $z_{\text{stat}} = 4.8412 > z_{CV} = 2.5758$, **So reject** H_0 .
- 9. Given s = 15 and $\mu = 100$ and sample, n = 49, M = 105 H_0 : $\mu = 100$; H_a : $\mu > 100$, a = 0.05 $s_M = 2.14$, $z_{\text{stat}} = 2.3333$ and $z_{CV} = 1.96$. Since $z_{\text{stat}} = 2.33 > 1.96$. **So, reject** H_0 .

10. Given s = 2.4 and $\mu = 5.8$ and sample, n = 36, M = 6.4 H_0 : $\mu = 5.8$; H_a : $\mu \neq 5.8$, a = 0.05 $s_M = 0.4$, $z_{\text{stat}} = 1.50$ and $z_{CV} = \pm 1.96$. Since -1.96 <, $z_{\text{stat}} = 1.5 < 1.96$, **Don't reject H**₀.

11. Given s = 1.2 and $\mu = 5.8$ and sample, n = 36, M = 6.0 H_0 : $\mu = 5.8$; H_a : $\mu \neq 5.8$, a = 0.01 $s_M = 0.2$, $z_{\text{stat}} = 1.0$ and $z_{CV} = \pm 2.5758$. Since -2.5758 <, $z_{\text{stat}} = 1.0 < 2.5758$, **Don't reject H**₀. 12. SAT info: μ = 508 and s = 100 a. Pr(z < -0.08) = 0.4681 or **46.81%** (Note. To convert a decimal to %, multiply by 100)

$$z = \frac{M - \mu}{\sigma} = \frac{500 - 508}{100} = -0.08$$

b. Pr(z > 1.92) = 1 - Pr(z < 1.92) = 1 - 0.9726 = 0.0274 or **2.74%**

$$z = \frac{M - \mu}{\sigma} = \frac{700 - 508}{100} = 1.92$$

c. Percent between SAT 400 and 700: Pr(-1.08 < z < 1.92) Pr(z < 1.92) = 0.9726 and Pr(z < -1.08) = 0.1401 So Pr(-1.08 < z < 1.92) = 0.9726 - 0.1401 = 0.8325 = 83.25%

$$z = \frac{M - \mu}{\sigma} = \frac{400 - 508}{100} = -1.08$$

13. IQ info: $\mu = 100$ and s = 15a. Percent with IQ > 140 is Pr(z > 2.67)

Pr(z > 2.67) = 1 - Pr(z < 2.67) = 1 - 0.9962 = 0.0038 or **0.38%**

$$z = \frac{M - \mu}{\sigma} = \frac{140 - 100}{15} = 2.67$$

b. Percent with IQ between 60 and 80 is Pr(IQ < 80) - Pr(IQ < 60)Pr(z < -1.33) - Pr(z < -2.67) = 0.0918 - 0.0038 = 0.088 or **8.8%**

$$z = \frac{M - \mu}{\sigma} = \frac{60 - 100}{15} = -2.67$$

$$z = \frac{M - \mu}{\sigma} = \frac{80 - 100}{15} = -1.33$$

14. Statewide Statistics: English $\mu = 75$, s = 18 and Math $\mu = 73$, s = 15Troy did better, relative to the rest of students taking the exam, on Math since his *z*-score was higher.

English:
$$z = \frac{M - \mu}{\sigma} = \frac{82 - 75}{18} = 0.39$$

Math:
$$z = \frac{M - \mu}{\sigma} = \frac{80 - 73}{15} = 0.47$$

15. Given $\mu = 126$ and sample s = 15.69, M = 119.5, n = 16 $H_0: \mu = 126; H_a: \mu \neq 126, a = 0.05$ (assumed before hypothesis analysis) $s_M = 3.82$ (used to estimate s_M), $z_{\text{stat}} = -1.66$ and $z_{CV} = \pm 1.96$. Since -1.96 <, $z_{\text{stat}} = -1.66 < 1.96$, **Don't reject H_0**. 16. Find the 60% percentile of population with $\mu = 24$, s = 2.5. The *z*-score with Pr(z) = 0.60 is z = 0.2533 (Table A1), So M = 24.63

$$z = 0.2533 = \frac{M - 24}{2.5}$$
; So $M = 2.5(0.2533) + 24 = 24.63$

In Progress